2/SAFUAUDIT

SMART CONTRACT
SECURITY
ASSESSMENT

PROJECT:
SWMETAVERSITY
DATE:
JANUARY 11, 2023

= https://t.me/SafuAudit
-:== WWW.5a f'._] dul d it.com

Introduction

Client
Language
Contract Address
Owner
Deployer
SHA-256 Hash
Decimals
Supply
Platform
Compiler
Optimization
Website
Twitter

Telegram

SWMetaversity

Solidity
0xbd90CCbb4B5eb18d4cCCc3525436e68468B1f280
OxEEd6F29c3c7eBDE225B7275bd53197842DbB08cA
OxEEd6F29c3c7eBDE225B7275bd53197842DbB08cA
b5e69d90c748cee’fb9d2379a222e91050cd4e8f

18

150000000

Ethereum

v0.8.17+commit.8df45f5f

No with 200 runs

https://swdesignmetaversity.co

https://t. me/swdmetaversity

ams Www.safuaudit.com
nyr

@

Overview

Fees
+ Buy fees: 0%
+ Sell fees: 0%

Fees privileges
+ Owner can set the buying price

Ownership
+ Owned

Minting
+ No

Max Tx Amount
¢ Can'tset max Tx

Pause
+ Can't pause

Blacklist
¢+ Can't blacklist

Other Privileges
+ Minting is done only when users buy Tokens, via ETH (buyViaETH function) or via
USDT (buyViaUSDT function)
+ The owner can modify the minting boundaries of transactions (i.e minimum and
maximum amounts to be bought)

e
ams Www.safuaudit.com @

awr

Table Of Contents

01 Intro

Introduction
Overview

Risk classification

02 Contract inspection

Contract Inspection

Inheritance Tree
04 Findings

Vulnerabilities Test
Findings list

Issues description

05 Conclusions

Disclaimer
Rating

Conclusion

P
awr

ams Www.safuaudit.com @

Risk Classification

Critical

Issues on this level are critical to the smart contract's performance/functionality and should
be fixed before moving to a live environment.

Medium

Issues on this level could potentially bring problems and should eventually be fixed.

Minor

Issues on this level are minor details and warning that can remain unfixed but would be
better fixed at some point in the future

Informational

Information level is to offer suggestions for improvement of efficacity or security for features
with a risk free factor.

amn WwWw.safuaudit.com @

ams
ayr

Contract Inspection

| File Mame | SHA-1 Hash |

| SWMetaversity.sol | b5ef2d9@c748cee7fbod2379a222e91050cd4e8f |
Contracts Description Table

**ReentrancyGuard*®* | Implementation | |||

Context | Implementation | |||

0wnable | Implementation | Context |||

TERC28 | Interface | |||

TERC28Metadata | Interface | IERC28 |||

ERC28 | Implementation | Context, IERC28, IERC28Metadata |||

ERC28Burnable | Implementation | Context, ERC28 |||

*¥®)sDTCalle** | Implementation | |||

ShMetaversity | Implementation | ERC28, ERC28Burnable, Ownable, ReentrancyGuard |||

L | <constructor> | Public | | @ | ERC28 |
L | buyviaETH | External | | @E | nonReentrant |
L | ethDistribution | Private & | @ | |
L | buyviausDT | External | | @ |no !l |
L | usdtDistribution | Private & | @ | |
L | updateFTETHPrice | External | | @ | onlyOuwner |
L | updateFTUSDTPrice | External | | @ | onlyOuner |
L | setMaxMint | External | | @ | onlyOwner |
L | setMinMint | External | | @ | onlyOuner |
L | setMaxTokens | External | | @ | onlyOwner |
L | withdrawUSDTFromContract | External | | @ | onlyOuner |
L | withdrawERC28FromContract | External | | @ | onlyOuner |
L | withdraw | External | | @ | onlyOwner nonReentrant |
Legend
| Symbol | Meaning
Parasmass S o |
| & | Function can modify state |
| oE | Function is payable |

—
ams Www.safuaudit.com @

ayr

Contract Inheritance

SWhMetaversity

ER.C20Bumable ’
IER.C20Metadata

Inheritance is a feature of the object-oriented programming language. It is a way of extending
the functionality of a program, used to separate the code, reduces the dependency, and
increases the re-usability of the existing code. Solidity supports inheritance between smart
contracts, where multiple contracts can be inherited into a single contract.

—
ams Www.safuaudit.com @

awr

Vulnerabilities Test

Test Name Result
Function Default Visibility Passed
Integer Overflow and Underflow Passed
QOutdated Compiler Version Passed
Floating Pragma Passed
Unchecked Call Return Value Passed
Unprotected Ether Withdrawal Passed
Unprotected SELF-DESTRUCT Instruction Passed
Reentrancy Passed
State Variable Default Visibility Passed
Uninitialized Storage Pointer Passed
Assert Violation Passed
Use of Deprecated Solidity Functions Passed
Delegate Call to Untrusted Callee Passed
DoS with Failed Call Passed
Transaction Order Dependence Passed
Authorization through tx.origin Passed
Block values as a proxy for time Passed
Signature Malleability Passed
Incorrect Constructor Name Passed

@ www.safuaudit.com

@

Vulnerabilities Test

Test Name Result
Shadowing State Variables Passed
Weak Sources of Randomness from Chain Attributes Passed
Missing Protection against Signature Replay Attacks Passed
Lack of Proper Signature Verification Passed
Requirement Violation Passed
Write to Arbitrary Storage Location Passed
Incorrect Inheritance Order Passed
Insufficient Gas Griefing Passed
Arbitrary Jump with Function Type Variable Passed
DoS With Block Gas Limit Passed
Typographical Error Passed
Right-To-Left-Override control character (U+202E) Passed
Presence of unused variables Passed
Unexpected Ether balance Passed
Hash Collisions With Multiple Variable Length Arguments Passed
Message call with the hardcoded gas amount Passed
Code With No Effects (Irrelevant/Dead Code) Passed
Unencrypted Private Data On-Chain Passed

e
&= www.safuaudit.com @)

Findings

ID Category Issue Severity

CS-01 Coding Standards Directly distributing the msg.value on purchase Medium

GO-01 Gas Optimization Unnecessary double validation Optimization

——
& www.safuaudit.com @)

CS-01 Directly Distributing The Msg.value On Purchase

Lines # 768

function buyViaETH(address to, uint256 amount) external payable nonReentrant {
require{amount » 8, "Token Amount Should be greater than zero™);
require{totalSupply() < MAX SWDM TOKENS,"all SWDM Tokens Have been minted.");
require(totalsupply() + amount * 18 ** decimals() <= MAX_SWDM TOKENS,
"Token amount excesds with available SWDM FT's.");
require(amount »= minMint,"You can't mint less than the minimum mint count.");
require(amount <= maxMint,"You have exceeded maximum mint count.");
require({msg.value »= ftPrice * amount,
"Insuffient ETH amount sent For Purhcase SWDM FTs.");
ethDistribution(msg.value);
_mint(to, amount * 1@ ** decimals()});

Description

The buyViaETH() function is directly distributing the msg.value of the transaction to the
ethDistribution() function, keeping the excess balance of the transaction - thus not being
returned to the user.

Recommendation

It is recommended in these cases to always return any excess balance to the user.

"
ams wWww.safuaudit.com @

awr

GO-01 Unnecessary Double Validation

Lines # 778, 779

-» require(totalSupply() < MAX SWDM TOKENS,"All SWDM Tokens Have been minted.");
-» require(totalSupply() + amount * 18 ** decimals() <= MAX SWDM TOKENS,

"Token amount excesds with available SWDM FT's.");

Description

Within the buyViaETH() function, there is a double validation of whether the totalSupply will
be less than or equal to the value of MAX_SWDM_TOKENS. This increases the gas fee costs of
the contract both for the moment of deploying it or for making a call of the function.

Recommendation

One possible solution is delete: require(totalSupply() < MAX_SWDM_TOKENS,"All SWDM
Tokens Have been minted.");

—
ams Www.safuaudit.com @

ayr

Disclaimer

SafuAudit.com is not a financial institution and the information provided on this
website does not constitute investment advice, financial advice, trading advice,
or any other sort of advice. You should not treat any of the website's content as
such. Investing in crypto assets carries a high level of risk and does not hold
guarantees for not sustaining financial loss due to their volatility.

Accuracy of Information

SafuAudit will strive to ensure the accuracy of the information listed on this
website although it will not hold any responsibility for any missing or wrong
information. SafuAudit provides all information as is. You understand that you
are using any and all information available here at your own risk. Any use or
reliance on our content and services is solely at your own risk and discretion.

The purpose of the audit is to analyze the on-chain smart contract source code
and to provide a basic overview of the project.

While we have used all the information available to us for this straightforward
investigation, you should not rely on this report only — we recommend
proceeding with several independent audits Be aware that smart contracts
deployed on a blockchain aren't secured enough against external vulnerability or
a hack. Be aware that active smart contract owner privileges constitute an
elevated impact on the smart contract safety and security. Therefore, SafuAudit
does not guarantee the explicit security of the audited smart contract. The
analysis of the security is purely based on the smart contracts alone. No
applications or operations were reviewed for security. No product code has been
reviewed.

o
wr

ams Www.safuaudit.com @

"Only in growth, reform, and change, paradoxically
enough, is true security to be found."

